
outside; ql, q=, effective flux densities at walls; q~, q~, densities of emitted fluxes at 

walls; R(yo), radius of curvature of contour L at point Yo; R~, R2, internal and external 
radii of annular gap; r, coordinate; S, two-dimensional region; u = q~ + q2, v = q2 -- q~; 
W~, W2, probabilities that a flux incident respectively on the externaland internal cylin- 

, W* probabilities that the emitted flux will drical surface will pass through the gap; W~ 2, 
exit through the internal and external cylindrical surface, respectively; w, discrepancy in 
the equation; x, coordinate; y, point of region S; A, Laplacian; Au, Av, absolute errors; 
~u, ~v, relative errors; ~(~), transmission-coefficient tensor. Indices: ~, number of the 
representation for the transmission coefficient; j, number of gap wall. 
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NEW APPROXIMATE ANALYTIC METHODS OF INVESTIGATING 

PROBLEMS OF PHYSICOCHEMICAL MECHANICS 

A. D. Polyanin and V. V. Dil'man UDC 5 1 8 . 1 2 : 5 4 1 . 1  

New approximate analytic methods are suggested for investigating problems of 
physicochemical mechanics. Specific examples are provided, illustrating the 
use of these methods. 

I. Asymptotic Correction Method. Various engineering equations, obtained empirically 
or by approximate solution of the corresponding (boundary-value) problems, are often used in 
practice. The validity region of these equations is usually restricted, and is separately 
established in each specific case. Below we suggest a simple universal method of substantial 
improvement of the approximate engineering equations, based on using the exact asymptotic of 
the original boundary-value problem. 

Let the unknown quantity S be obtained by the approximate expression 

s = s ( k ,  P), (1) 
which  u s u a l l y  r e f l e c t s  t he  q u a l i t a t i v e  b e h a v i o r  o f  S as a f u n c t i o n  o f  the  change i n  the  domi-  
n a n t  p a r a m e t e r s  o f  t h e  p r o b l e m  k and P ( h e r e  and l a t e r  i t  i s  assumed f o r  s i m p l i c i t y  t h a t  
t h e r e  a r e  two such  p a r a m e t e r s ) .  Le t  t he  main t e rms  o f  the  a s y m p t o t i c  a p p r o x i m a t e  e x p r e s s i o n  
(1) be in  the  l i m i t i n g  c a s e s  k + ~ (P = c o n s t )  and P + ~ (k = c o n s t )  

Sh~, (2) S -~ S ~ p ; P-+ oo, S -+ * 

s~p = s~p (k, P)~ s L  = s L  (k, P) (3) 

( i n s t e a d  o f  (2) one can c o n s i d e r  any o t h e r  l i m i t i n g  c a s e s ;  s ee  the  s p e c i f i c  examples  p r o v i d e d  
b e l o w ) .  

I f  s i m i l a r  e x a c t  a s y m p t o t i c  s o l u t i o n s  o f  t he  o r i g i n a l  p r o b l e m  a r e  known 

k-+c~, S--~S~p; P-~oo, S--*Sh~, (4) 

t he  a p p r o x i m a t e  Eq. ( l )  can be improved  by t h e  f o l l o w i n g  s i m p l e  method .  I n  e x p r e s s i o n  (3) we 
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express the parameters k and P in terms of Sk= and S~p (it is assumed that the corresponding 

transformation is nondegenerate) and Substltute them in Eq. (I). As a result, we obtain 

S F * (5) (s| s~| (r * = (s=p (k, p), s:| (k, p)) = s (k, P)). 

I f  now one substitutes the corresponding asymptotic exact solution of the original prob- 
lem (4) instead of the asymptotic (3) of the approximate Eq. ( I ) ,  one then obtains the equa-. 
tion 

S = F(S| Sh~), (6) 

which along with the correct qualitative description of the quantity S now also guarantees an 
exact result in the limitng cases k -~ = and P -~ ~ (unlike Eq. (I)). 

It must be noted that if Eq. (|) is exact, Eq. (6) will also be correct (i.e., the pro- 
cedure suggested does not worsen the original result). Moreover, it is easily verified that 
if Eq. (I) undergoes an arbitrary stretch of the parameters k and P (k ~ ~k, P § BP, ~, 8 = 
const) differing from the accurate one (i.e., Eq. (I) is "spoiled" by stretching), then the 
procedure indicated reconstructs it fully from the known exact asymptotic and renders it 
exact. It is also easy to mention a wider class of transformations, following which the pro- 
cedure suggested also reconstructs the "spoiled" equation. 

We illustrate the method suggested on several specific examples. It is well-known [I] 
that in analyzing mass exchange of a drop with laminar flow in the diffuse boundary layer 
approximation an analytic solution of the problem can be obtained only in the limiting cases 
of relatively small and infinitely large values of the ratio of the drop viscosity to the 
surrounding liquid B. This is due to the fact that the asymptotic expansions for the concen- 
tration and the mean Sherwood number in terms of the large Peclet number Pe = aU~D-* for the 
drop are not uniformly valid in the parameter 8. In particular, the asymptotic values for 
the mean Sherwood number at Pe >>I for a drop of moderate viscosity (fl = 0(I)) and a solid 
sphere (B = ~) are [1]  

[B = 0(1), S h =  ShB; [3---+ oo, Sh--+Sl~; (7) 

Sh~ = (2Pe//=[3=(,-t-[$)1 - ' /~ ,  Sl~ = +(3=)=/3r-, (+)peU3 ~0,624Pe '/a 

A consequence of the nonuniformity of the results (7) in the parameter 8 is the property 
Sh= ~= lim Sh 8 = 0. 

It was shown in [2, 3] that the validity region of the equations obtained in the diffuse 
boundary layer approximation for drops Sh ffi Sh 8 (7) is limited from above in the parameter 8 by the in- 
equality B < O (Pea/3). The problem mentioned in [4] was investigated approximately over the 
whole interval of variation of the drop viscosity 0-~.~oo. Additional considerations were 
included in this case, which are not directly related to the equation of convective diffu- 
sion. 

We now show how, using the procedure suggested, one can improve on the results of [4], 
where the following approximate cubic equation was obtained for the mean Sherwood number 

Pe 
Sh 3. (2Sh -{- 3[~ -I- 1) = O. (8) 

161n2 (I -FP) 

The following two basic asymptotic relations take place for the mean Sherwood number 

[~ = 0 ( 1 ) ,  S h =  Sh~; [3.--~oo, Sh--+Sh~ ; 

Sh~ -- 81n2 (1 + [~) ' ~. 161n2] ' (9) 

of (8) : 

which correspond to a drop with moderate viscosity 8 = O(1) and a solid sphere 8 = =; in de- 
riving Eq. (9) it was taken into account that the Peclet number is large, Pe >> I. 

It is seen that the limiting approximate expressions (9) obtained from (8) are such that 
only the coefficients differ from the asymptotically correct (7). We now express the param- 
eters 8 and Pe in terms of Sh~ and Sh~, and we further substitute them into Eq. (8). As a 

result, we obtain 

Sh' - -  Sh~ 2 (Sh-- I) - -  S l~  a = 0. ( l 0) 
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The exact asymptotic solutions of the original problem corresponding to (9) are given above 
and have the shape (7). 

Takin~ into account that for large Peclet numbers Sh ~ 1 and Sh -- I~ Sh, and replacing 
in (I0) Sh~ and Sh~ by Sh B and Sh~, we obtain the following approximate equation for deter- 
mining the mean Sherwood number: 

S ~ - - S h ~ S h - - S h ~  = O, (11) 

which correctly reflects the qualitative behavior of Sh, and leads to the exact asymptotic 
result for B = O(I) and B = ~ (Pe>> I). 

The mean Sherwood number corresponding to (II) 
lent for analysis: 

Sh~ 
Sh = Sh~x(Q), Q -- Sh~ 

where x = x(Q) i s  the  r o o t  o f  the  e q u a t i o n  

can be represented in a form more conven- 

pe~/3 
-- - -  ----- const 1 -}-.~ ' (12) 

x 3 - - x - -  Q 3 = 0. (13)  

Consider one specific example, when the procedure suggested above makes it possible to 
improve substantially the approximate equation. Stationary convective diffusion was investi- 
gated in [5], consisting of a complicated exchange chemical 
The following expression was obtained for the mean Sherwood 
flow of a spherical drop (Hadamard--Rybchinskii flow) 

f 1 Pe 
Sh=Sh(k, Pc, ~)= 

81n 2 + 1 

In deriving Eq. (14) it was assumed that Pe>>l. 

reaction of arbitrary order n.' 
number corresponding to Stokes 

2~) 1/2 (14) 

For k + ~ (Pc = const) the approximate expression (14) describes correctly the asymptotic 
behavior of the mean Sherwood number, and in the other limiting case we have 

k - + 0 ,  Sh-+ Sh0 = P c  1/2 [81n2(I+ ~)]-1/2 . (15) 

Here and l a t e r  the  a s t e r i s k  above the, coKrespond ing  a s y m p t o t i c s  o f  the  app rox ima te  s o l u t i o n  
w i l l  be o m i t t e d :  Sho~ = S h ( 0 ,  Pe ,  8 ) . . - W e  now e x p r e s s  by means o f  ( 1 5 ) t h e  P e c l e t  number i n  
terms o f  She, and s u b s t i t u t e  i t  i n t o  (14) .  As. a r e s u l t ,  we r e a c h  the  e q u a t i o n  

S h =  [Sh~ + 2k(n + l)-q 1/~ , (16) 

which was earlier obtained by other considerations in [6]. In using this equation for She 
one must choose the exact value of the mean Sherwood number, corresponding to the pure dif- 
fusion regime without chemical reactions (k = 0). It must be noted that the validity region 
of the improved equation (16) is substantially wider than that of the original approximation 
(14), and it can also be used for approximate determination of the mean Sherwood number, both 
for a drop and for a solid particle of arbitrary shape in any flow, In particular, for large 
Peclet numbers and for translational flow of a solid sphere one must put in expression (16) " 
She = Sh~, where Sh=o has been determined in (7). 

We note that in the given case the parameterk was not eliminated in terms of the 
asymptotic approximate equation (14) for k + ~ due to the fact that this asymptotic coincided 
with the corresponding expression. 

In the case of translational Stokes flow of a spherical drop and for first order reac- 
tions n = I comparison of the approximate equation (16) with results of numerical integra- 
tion [7], obtained in the approximation of a diffuse bounda~ layer expressed for a local 
diffusion flow [8], was carried out in [6]; in this case the maximum error of Eq. (16) was 
around 7%. Table I provides a comparison of the approximate equation (16) with results of 
numerical analysis [9], obtained for translational flow of a spherical drop in the case of 
volumetric chemical reactions of half-integral order n = I/2 for various values of the param- 
eters k, Pc, and B- It is seen that in this case theerror was around 5%. 

2. Method of Model Equations and Analogies. In many problems of convective mass and 
heat transfer, it is of basic practical interest to determine the mean integral characteris- 
tics of the solution, the mean Sherwood Sh and Nusselt Nu numbers, while at the same time 
direct determination of the concentration and temperature fields is often of lower priority, 
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TABLE 1. Comparison of the Mean Sherwood Number, 
Obtained by Approximate and Numerical Methods, for 
Translational Flow of a Spherical Drop in Case of a 
Volumetric Chemical Reaction of Fractional Order n = 
I/2 

Pe 

500 
5000 
500 
5000 
5000 
5000 

500 
50 

500 
5000 
5000 

I oetgj I as) Sho, [ 9 ]  

10 
10 

0,01 
OiOl 
0,01 

9,90 
27,9 
15,2 
49,3 
82,8 
87,0 

9,39 
28,1 
15,0 
48,7 
82,4 
91,5 

4,63 
i l ,2 
12,6 
41,3 
11,2 
41,3 

Error. 
~o 

5,2 
0,8 
1,2 
1,2 
0,4 

5 ,2  

supplying less substantial information. In these cases, for approximate description of the 
unknown mean characteristics it was suggested in [6] to consider, instead of the original 
complicated equations in partial derivatives, ordinary differential equations --model equa- 
tions of the problem. Solutions were constructed of these modelequations, and by means o~ 
the similarity principle one could even obtain an approximate exFression for the unknown 
mean characteristics. In the method of model equations and analogies the approximate solu- 
tion of the model equation is substantially improved by means of the exact asymptotics of 
the original boundary-value problem by using the procedure described in Sec. I. 

We illustrate the basic ideas of the method of model equations and analogies on specific 
examples (a more detailed discussion of the method is given in [6]). 

Consider stationary convective diffusion to the surface of a spherical drop, flowing in 
a translational Stokes flow (Hadamard--Rybchlnskli flow). It is assumed that on the surface 
of the drop there is total absorption of the solution in the liquid material, whose concen- 
tration far from the drop is constant. In dimensionless variables and in a spherical coor- 
dinate system r, e, fixed in the drop, the corresponding boundary-value problem is (the ~ast 
boundary condition in (18) is a consequence of the axial symmetry of the problem) 

I( a, ac a,a o ) l a2c c (17) 
- -  - - "  c ~ ; y = r - - 1 ;  

sinO O 0 0 y  Oy Pe Oy 2 ' C~ 

y =  O, c =  O; y-~oo,  c-~l;  0 = O, Ocl09 = O; (18) 

--  [~x (8) Y + Z~ (8) Y2I sin~O, L1 --  1 , ~s _ 38 + 2 ,  
2 (1+  8) 4 ( I + 8 )  (19) 

and f o r  t h e  s t r e a m  f u n c t i o n  i n  (19) we have  s e l e c t e d  t h e  t w o - t e r m  q u a d r a t i c  e x p a n s i o n  o f  t h e  
concentration in y near the surface of the drop. The solutions obtained in [I] correspond 
to the values %1 = %1(B), %2 = 0 (for a drop of moderate viscosity ~ =0(i)) and %~ = 0, %u = 
%2(~) = 3/4 (for a solid sphere). Since %1(~) § 0 for 8 + | account of the second term in 
the expansion of the stream function (19) is necessary to obtain the unknown relations, uni- 
formly valid in the parameter B for Pe ~I. There is no analytic solution of the problem 
(17)-(19). 

Near the limiting critical point 8 = 0, due to the equalities ~(y, 0) = 0 and (~c/~e)8=o= 
0 the second term in the left-hand side of Eq. (17) can be neglected; in this case (.17) de- 
generates into an ordinary differential equation, and the problem is rewritten in the follow- 
ing form: 

dc 1 d~c 
- - 2 [ L l ( 8 ) y + ~ 2 ( 8 ) y  ~] = - - - - ;  y = O ,  c = O ;  y--->-oo, c--~l .  (20) 

dy Pe d #  

We note that the solution of (20) depends weakly on the shape of the parameter ~2 = 
%=(B) Indeed, since in the case under consideration Pe ~I, for values 8 < O(Pe x13) the 
quadratic term in Eq. (20) can be neglected, corresponding to a solution generally independent 
of %2. The necessity of taking into account terms including the I= dependence becomes appar- 
ent for values B~O(Pel/3), when (due to Pe ~ I) the relationship %u(8) ~%2(~) = 3/4 is 
valid. The fact mentioned also takes place for the original boundary-value problem (17)-(19), 
and allows to replace everywhere the dependence %2 = %a(B) by the limiting value ~a(~) = 3/4. 
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In the model equation [6], corresponding to the partial differential equation (]7), it 
is natural to select the available analog limiting properties in the parameters B and Pe of 
the ordinary differential equation putting in it (20), putting in it %2(8) = X2(~). 

The solution of problem (20) is (X2 = 3/4) 
# 

o 

o 

The local diffusion flow at the limiting critical point of the drop, corresponding to 
the solution (21), is determined by the expression 

] = A(Pe, 1 + 1~). (22) 

Taking into account that Pe >) I, from Eqs. (21), (22) we obtain the following asymptotic: 

= 0(1), ] --~- ]~ = (2Pe)l! 2 [~ (1 + 13)]-! I2 ; (23) 

~--+ 0o, ]"+ ]oo = 3.2-113F-t(l/3)Pe 11s. 

Here JB and j| are the local diffusion currents at the limiting critical point of a drop of 
moderate viscosity and of a solid sphere; it must be noted that j~ .=~=lim, J8 = 0. 

From the asymptotic equations (23) we express the parameters B and Pe in terms of JB and 
j~, and substitute into Eq. (22). As a result we have 

] = A  2-~-r8 4 l~a{ ~!_ll~o~ (24) 
27 l~, 27--'-~ k 3 ] ]~  ] 

To o b t a i n  the  t r u e  e x p r e s s i o n  f o r  the  mean Sherwood number a t  the  s u r f a c e  o f  the  drop we 
use a s i m i l a r i t y  p r i n c i p l e  [6] ; more p r e c i s e l y ,  we assume t h a t  the  fundamenta l  dependence  o f  
the  mean Sherwood number Sh on the  a u x i l i a r y  Sherwood numbers (7 ) ,  d e t e r m i n e d  by the  asymp- 
t o t i c  s o l u t i o n s  o f  the  o r i g i n a l  b o u n d a r y - v a l u e  p rob lem ( 1 7 ) - ( 1 9 )  f o r  B = 0 (1) and B = 
(Pe>> 1),  i s  s i m i l a r  to  dependence  (24) f o r  the  l o c a l  d i f f u s i o n  f lows  c o r r e s p o n d i n g  to  the  
model p rob lem (20) ,  i . e . ,  the  f o l l o w i n g  e q u a t i o n  (S i s  the  d i m e n s i o n l e s s  a r e a  o f  the  p a r t i c l e  
s u r f a c e )  i s  v a l i d  

Sh = A  r3 

1 OC.dsl (Sh--s 0  / 
$ 

The approximate expressions (7), (25) reflect well the behavior of the mean Sherwood 
number in the whole region of variation of the parameter B: 0~<oo In particular, for B = 
0(1) or B -> ~ (Pc ~> I) Eq. (25) transforms to the results of [1], whicharegivenbyrelation- 
ships (7). Moreover, the variable replacement y' = ShBy in the integral of (21), (25) shows 
that there exists a similarity parameter Q = Sh~/ShB (12), generating the following relation 
between the mean Sherwood numbers: 

Sh(Pei, 1~i) I'Pel (1+  ~)]i/2 pel/3 pe~/3 
Sh(Pe2,~)----- P e ~ U - ~ - ~ J  for i " - ~ - - - - -  i+13------~ " (26) 

It is important to stress that despite the fact that relations (26) were obtained from 
the approximate equation (25), they are an exact consequence of the original boundary-value 
problem (17)-(19) (with X= ~ X2(~) = 3/4), with the. same similarity parameter Q. The latter 
is proved by introducing the new var-iable y, = pc1/2(] + B)-~/2y directly into (17)-(|9). 

The analysis in [I0] of the boundary-layer equation was carried out numerically without 
linearization of the current function. It must be noted, however, that to obtain a given 
accuracy for large Peclet numbers the grid step must be sensitive to the values of the 
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parameters B and Pc; in this case, according to the discussion above, during a numerical 
study of the problem (17)-(19) in the case Pe>>1 and B >>I the value of the similarity 
parameter Q must be selected for a choice of the grid step (this should have been done in 
[10]); in this case Eqs. (26) can serve as a criterion of the accuracy of the calculation. 

We note an important feature, which is typical of the use of the method of model equa- 
tions and similarity: the validity region of the approximate equation (25) is substantially 
wider than the information contained in the original statement of problem (17)-(]9). In 
particular, the approximate expression (25) can also be used successfully to determine the 
mean Sherwood number for pure shear flow of a drop in the whole region of variation of the ra- 
tio of viscosity of the drop to that of the surrounding liquid 0~.~-~oo for large Peclet num- 
bers. In this case one must use for the parameters Sh B and Sh~ in (25) the corresponding 
limiting values, obtained in [] |] : 

Sh~ =(3/z)1/'~ (1 + ~)-1/2Pe1/~, Sh~ "-' 1,22Pe 1/3, Pe--= a2(xD-t (27) 

It is interesting to note that here too we have the same similarity parameter Q, and rela- 
tionship (26) is valid. 

In the example above it was shown that in using the method of model equations and simi- 
larity [6] the approximate solution of the model equation was substantially improved by 
means of the exact asymptotics (7). 

Comment. We now show how Eq. (I]), derived earlier by a different method, can be ob- 
tained by approximate solution of the model equation (20) by an integral method with subse- 
quent use of the similarity principle. For this we rewrite Eq. (20) for c, = | -- c and inte- 
grate it over y from zero to infinity, assuming that the quantity c, and all its derivatives 
tend exponentially to zero for y § =. As a result, we obtain after several transformations 

1 dc 

0 

Here, as earlier, it is assumed that ~2 = ~2(~) = 3/4. 

As usual, the solution of the integral identity (28) is sought in the form 

c = ~ (W6), (29) 

where the profile ~----~(x) is chosen arbitrarily, and the constant (5, corresponding to the 
width of the diffusion boundary layer at the limiting critical point of the drop, is deter- 
mined by the solution of the equation 

(30) j '  - -  2Pe~,z (~) GzJ - -  4Pe  ~,=o.. = 0 ,  i = A 6  - z ,  

oo 

0 

which  was o b t a i n e d  a f t e r  s e v e r a l  t r a n s f o r m a t i o n s  as  a r e s u l t  o f  s u b . s t i t u t i n g  (29) i n t o  i d e n -  
t i t y  (28) .  

For  Pe -~ ~ we have from the  c u b i c  equa- t ion (30) the  a s y m p t o t i c  

--~ 0 ( I ) ,  ] .-~ ]13 = [2Pe~l(~)  (y1]I/2 ; (31) 

~.~ oo, 1.+1| =(dPet, lo:) ~/s 

Using relations (31) to express the parameters 8 and Pe in terms of JB and j~, and sub- 
stituting them into (30), we obtain the following equation for the local diffusion flow: 

p _  .~ .  .3 I~I--I~ =0.  (32) 

Using now for (32) the similarity principle, we reach an approximate equation for the mean 
Sherwood number, namely Eq. (II). 

It must be stressed that the final result (II) (or Eq. (32)) is independent of the spe- 
cific choice of the concentration profile ~=~(x) (29). We also note that the exact relation 
for the mean Sherwood number (26) follows from the approximate expression (II). 

3. "Carryover" Method of Integral Transforms. In solving linear problems, one often 
uses various integral transforms of the unknown function (for example, the Laplace--Carlson 
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transform, the Bessel transform, etc.), which can be written tentatively in the form 

u=Lr (33) 

where c is the unknown function (the inverse image), L is some integral operator, and u is 
the image. 

It appears that in a number of cases a transform of shape (33) can also be used for 
approximate analysis of nonlinear boundary-value problems, a "carryover" transform under the 
function sign according to the rule 

L * f (c) - -  f ( L .  c) = f (u), (34) 

where f = f ( c )  i s  some n o n l i n e a r  f u n c t i o n  o f  t h e  argument  c.  The v a l i d i t y  r e g i o n  o f  the  
a p p r o x i m a t e  o p e r a t i o n  (34) must be e s t a b l i s h e d  s e p a r a t e l y  i n  each s p e c i f i c  c a s e .  

We now i l l u s t r a t e  an a p p l i c a t i o n  o f  the  " c a r r y o v e r "  method o f  i n t e g r a l  t r a n s f o r m s  on a 
s p e c i f i c  example o f  i n d e p e n d e n t  i n t e r e s t .  

C o n s i d e r  n o n s t a t i o n a r y  c o n v e c t i v e  d i f f u s i o n  to  a r e a c t i n g  ( s o l i d  o r  l i q u i d )  s p h e r i c a l  
p a r t i c l e  d u r i n g  l i q u i d  f low w i t h  an a r b i t r a r y  exchange  chemica l  r e a c t i o n .  In  d i m e n s i o n l e s s  
v a r i a b l e s  the  c o r r e s p o n d i n g  b o u n d a r y - v a l u e  p ro b l em  i s  f o r m u l a t e d  as f o l l o w s :  

Oc q_ Pe (v. V) c = Ac -- kf (c) (f (0) = 0, f~ ~ 0, k ~ 0), (35) 
Ot 

t = O ,  c----O; r =  1, c =  1; r--~oo, c-+O; (36) 

C a2kvF(C,) F(C) t= Dt, 
c = - r  , DC.  ' 

Here Cs~=0 and kvF(C) is the chemical ~ reaction rate. 

We apply to the equation, initial and boundary conditions (35), (36) the Laplace-Carlson 
transformation. Carrying out the transformation under the sign of the function f according 
to rule (34), we obtain 

pu_~Pe(v.v)u=Au--k[(u); r =  1, u =  1; r - + o o ,  u--+O. (37) 

To analyze problem (37) we use the method of model equations and s imi lar i ty  [6] (see 
also Sec. 2). The simplest one-dimensional analog of problem (37) is the model equation 

U~x+Peu~--pu=kf(u); x = 0 ,  u =  1; x -+o o ,  u - + 0 ,  (38) 

which has  been  o b t a i n e d  by a p p r o x i m a t i n g  the  c o e f f i c i e n t s  o f  the  o r i g i n a l  e q u a t i o n  (37) by 
their values at infinity in the case of translational flow (v § x, where e x is the unit 
vector along the x axis) with consequent replacement of the curvilinear surface of the sphere 
r = | by the tangent plane x = | at the inflow point and the replacement x § x-- I. 

To construct the unknown functional relation between local currents, we use an approxi- 
T 

mate method of integrating Eq. (38). For this we introduce the new variable w = u x and we 
write Eq. (38) in the form dw 2 + 2Pe wdu = 2[pu + kf(u)Idu. We further integrate it from 
zero to u with account of the fact that for x § ~ w = u x + 0. Similarly to [6], the solution 
of the integral equation thus obtained is sought by an iteration method according to the equa- 
tion 

u u 

0 0 

2 . . . . .  (39) 

where any function can be chosen following the initial profile wo = wo(u). 

Restricting ourselves to a single iteration and putting in (39) x = 0, by account of the 
equalities u(0) = | and j =-w(;) we reach an expression for the shape of the local diffusion 
current ~. Putting further k = 0 and p = O, we obtain the value of the local diffusion cur- 
rent jo = jo(Pe), corresponding to the stationary solution (t § =) without exchange chemical 
reactions. Expressing the Peclet number in terms of jo: Pe = Pe(jo), and substituting it in- 
to the equation for the shape of the local flow j, we have 

1 I 

;-- (Jo + 2k (io = - 2 p o  
(40) 
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According to the similarity principle [6], to obtain the Laplace transform of the mean 
Sherwood number in (40) one must replace j by Sh. Further carrying out the inverse Laplace- 
Carlson transform, we find the following expression for the mean Sherwood number: 

Sh-- e -  . -  .if-----~--- ~ ~ '~er f ( l r~ ) ,  ~=Sho+_91~ [(c)dc. (41) 
0 

Here Sho is the mean Sherwood number corresponding to the solution of the stationary problem 
without volume chemical reactions k = 0. 

Equation (41) guarantees a correct asymptotic result for small and large t values. The 
stationary analog of this equation Sh = W~, corresponding to the limiting transition t § | 
in (4]), was obtained in [6]. For k = 0 the approximate expression (4]) determines the time 
dependence of the mean Sherwood number in the absence of chemical reactions. For transla- 
tional Stokes flow of a spherical drop or a solid particle the parameter Sho appearing in 
(41) is given by the equations Sho = Sh 8 and Sho = Sh~, where Sh B and Sh~ are given in (7). 

NOTATION 

a, radius of a spherical drop or a solid particle; C, flow concentration; Cs, concentra- 
tion at the particle surface; C~, undisturbed concentration at infinity; c, dimensionless 
concentration; D, diffusion coefficient; j, local diffusion flow; k, dimensionless rate con- 
stant of volumetric chemical reactions; kv, rate constant of volumetric chemical reactions; 
n, order of the reaction; Pe, Peclet number; p, complex parameter of the Laplace-Carlson 
transform; Q, similarity parameter;, r, 8, spherical coordinate system fixed at the drop; 
Sh = <j>, mean Sherwood number; t,, time; U~, undisturbed velocity of* incoming flow; ~, shear 
coefficient; B, dynamic viscosity ratio of a drop to that of the surrounding liquid (the 
value 8 = ~ corresponds to a solid particle); r = r(x), gamma function; ~, stream function; 

and u = p ~e-Ptcdt. 
% 
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